Keynote Talk 21st International Conference on Biological Inorganic Chemistry 2025

There is more than copper to reducing nitrous oxide (124954)

Lin Zhang 1 , Christoph Müller 1 , Mustafa Özel 1 , Sara Zipfel 1 , Pawel Lycus 1 , Oliver Einsle 1
  1. University of Freiburg, Freiburg, BADEN-WüRTTEMBERG, Germany

Copper-dependent nitrous oxide reductase (N2OR) is the only known metabolic enzyme to reduce the inert greenhouse gas N2O to N2 in the final step of microbial denitrification [1, 2]. It utilizes the dinuclear CuA site for electron transfer to the unique [4Cu:2S] cluster CuZ [3], where substrate reduction takes place . Structural and spectroscopic studies have revealed the architecture and flexibility of both metal centers and can be reconciled with a current mechanistic proposal [4-6]. Yet, to reduce linear N2O to a bent anion radical in a first step, an activation energy barrier of 250 kJ·mol–1 must be overcome and much remains to be understood about how this is achieved [7].

N2OR exists in two forms, clade I and II, that differ in their assembly pathways and in the machinery that couples them to their cellular electron supply, the quinone pool in the cytoplasmic membrane [8-11]. Here the energetics of the reaction come into play, as the quinone pool should not be sufficiently reducing to convert N2O. The nos operon of clade I N2O reducers contains the nosRgene, encoding an 80 kDa membrane-integral iron-sulfur flavoprotein [12]. NosR shows few homologies to other known proteins, and we have consequently produced the protein and analyzes its spectroscopy, structure and dynamics. The highly unusual arrangement of cofactors in NosR suggests a novel mechanism of energy transduction that might address key mechanistic questions in microbial N2O reduction.

  1. 1 O. Einsle and P. M. H. Kroneck (2004) Biol Chem 385:875-883
  2. 2 P. Tavares, A. S. Pereira, J. J. G. Moura and I. Moura (2006) J Inorg Biochem 100:2087-2100
  3. 3 A. Pomowski, W. G. Zumft, P. M. H. Kroneck and O. Einsle (2011) Nature 477:234-237
  4. 4 A. Pomowski, S. Dell'Acqua, A. Wüst, S. R. Pauleta, I. Moura and O. Einsle (2024) J Biol Inorg Chem 29:279-290
  5. 5 S. Ghosh, S. I. Gorelsky, S. DeBeer George, J. M. Chan, I. Cabrito, D. M. Dooley, J. J. G. Moura, I. Moura and E. I. Solomon (2007) J Am Chem Soc 129:3955-3965
  6. 6 L. Zhang, E. Bill, P. M. H. Kroneck and O. Einsle (2021) Chem Sci 12:3239-3244
  7. 7 L. K. Schneider, A. Wüst, A. Pomowski, L. Zhang and O. Einsle (2014) Metal Ions Life Sci 14:177-210
  8. 8 J. Simon, O. Einsle, P. M. H. Kroneck and W. G. Zumft (2004) FEBS Lett 569:7-12
  9. 9 W. G. Zumft and P. M. H. Kroneck (2007) Adv Microb Physiol 52:107-225
  10. 10 C. Müller, L. Zhang, S. Zipfel, A. Topitsch, M. Lutz, J. Eckert, B. Prasser, M. Chami, W. Lü, J. Du and O. Einsle (2022) Nature 608:626-631
  11. 11 B. Prasser, L. Schöner, L. Zhang and O. Einsle (2021) Angew Chem Int Edit 60:18810-18814
  12. 12 P. Wunsch and W. G. Zumft (2005) J Bacteriol 187:1992-2001