Oral Presentation 21st International Conference on Biological Inorganic Chemistry 2025

EPR for biocatalysis of different heme and tungsten enzymes (121977)

Rob A Schmitz 1 , Deborah M Boes 1 , Matthias Boll 2 , Xiaodan Li 3 , Dirk Tischler 4 , Shu-Shan Gao 5 , Peter-Leon Hagedoorn 1
  1. Delft University of Technology, Delft, Netherlands
  2. Microbiology, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
  3. Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
  4. Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
  5. Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China

Roughly one third of all enzymes contain one or more metal cofactor, and the identity, oxidation state and coordination environment of the metal cofactor provides essential functional information. EPR spectroscopy is very useful to measure metal cofactors in enzymes even in complex matrices such as whole cells, can be used to determine the redox state and obtain information on the direct environment of the metals sites.

We have explored the mechanism of metalloenzymes using ultrafast mixing and freezing techniques and used EPR spectroscopy to examine enzyme catalytic intermediate states of a heme enzyme chlorite dismutase chlorite dismutase and a tungsten-cofactor enzyme Benzoyl-coA reductase. 1,2 Furthermore we have provided direct evidence on the role of a heme cofactor in an unexpected heme enzyme Styrene oxide isomerase (figure).3 Finally, we determined the role of the heme cofactor in a new catalase-family enzyme Chanoclavine synthase which exhibits an unprecedented superoxide mechanism.4

67e6a541dfb70-SOI.webp

References

  1. Püschmann, J.; Mahor, D.; De Geus, D.C.; Strampraad, M.J.F.; Srour, B.; Hagen, W.R.; Todorovic, S.; Hagedoorn, P.L., ACS Catal., 2021, 11, 14533-14544. https://doi.org/10.1021/acscatal.1c03432
  2. Seelmann, C. S.; Simona,G.H.; Culka, M.; Strampraad, M.J.F.; Biskup, T.; Weber, S.; Ullmann, G.M., Schünemann, V.; Hagedoorn, P.L.; Pierik, A.J.; Boll M. ACS Catal., 2023, 13, 8631-8641 https://doi.org/10.1021/acscatal.3c01781
  3. Khanppnavar, B; Choo, J.P.S.; Hagedoorn, P.L.; Smolentsev, G.; Štefanić, S.; Kumaran, S.; Tischler, D.; Winkler, F.K.; Korkhov, V.M.; Li, Z.; Kammerer, R.A.; Li, X. Nat. Chem. 2024, 16, 1496-1504 https://doi.org/10.1038/s41557-024-01523-y
  4. Chen, C.C.; Y., Z.P.; L., Z.; Yao, Y.; Hagedoorn, P.L.; Schmitz, R.A.; Yang, L.; Yu, L.; Liu, A.; Sheng, X.; Su, H.; Ma, Y.; Wang, T.; Huang, J.W.; Zhang, L.; Yan, J.; Bao, J.; Cui, C.; Li, X.; Shen, P.; Zhang, W.; Min, J.; Wang, C.Y.; Guo, R.T.; Gao, S.S. Nature, 2025, https://doi.org/10.1038/s41586-025-08670-3