Plenary Talk 21st International Conference on Biological Inorganic Chemistry 2025

Exploiting enzymes and other approaches to build new siderophore architectures with new properties (120410)

Rachel Codd 1
  1. University of Sydney, University Of Sydney, NSW, Australia

Siderophores are low-molecular-weight organic molecules biosynthesized by bacteria and fungi optimised by nature to complex Fe(III) as part of microbial iron supply [1,2]. As natural product chelators, siderophores have inherent structural complexity beyond synthetic ‘off-the-shelf’ chelators, which prompted our thinking to use siderophores as a springboard to expand even further the chemical space of chelators and by extension, potential metal binding applications in biomedicine and the environment. We selected the trihydroxamic acid desferrioxamine B (DFOB) to develop our chemical/biological engineering approaches, as supported by foundational knowledge of its biosynthesis [3-5], its production by many actinomycetes species, and its clinical and pre-clinical presence for secondary iron overload disease and immunological positron emission tomography (PET) imaging, respectively [6]. Here, I will describe approaches where we blended methods in microbiology and semi-synthetic chemistry [7-9], organic and supramolecular chemistry [10], organic and inorganic chemistry [11], or chemo-enzymology and medicinal chemistry [12] to generate DFOB analogues with new properties, coordination chemistry, and potential applications. Alongside these methodological and application-driven goals, we have expanded fundamental understanding of siderophore biosynthesis and its control, and proposed new mechanistic and functional insight [12,13]. The cross-discipline methods we have developed to expand chemical space and property/function diversity for this single class of natural product chelator could be transferred to other secondary metabolites relevant to bioinorganic chemistry and beyond.

 

[1] A. Butler, T. Harder, A. D. Ostrowski and C. J. Carrano, J. Inorg. Biochem., 2021, 221, 111457. [2] R. Codd, in Comprehensive Inorganic Chemistry III, eds. V. L. Pecoraro and Z. Guo, Elsevier, Oxford, 2023, vol. 2, pp. 3–29. [3] N. Kadi, D. Oves-Costales, F. Barona-Gómez and G. L. Challis, Nat. Chem. Biol., 2007, 3, 652–656. [4] S. Rütschlin and T. Böttcher, Chem. Eur. J., 2018, 24, 16044–16051. [5] J. Yang, V. S. Banas, K. D. Patel, G. S. M. Rivera, L. S. Mydy, A. M. Gulick and T. A. Wencewicz, J. Biol. Chem., 2022, 298, 102166. [6] R. Codd, T. Richardson-Sanchez, T. J. Telfer and M. P. Gotsbacher, ACS Chem. Biol., 2018, 13, 11–25. [7] T. J. Telfer, M. P. Gotsbacher, C. Z. Soe and R. Codd, ACS Chem. Biol., 2016, 11, 1452–1462. [8] T. Richardson-Sanchez, W. Tieu, M. P. Gotsbacher, T. J. Telfer and R. Codd, Org. Biomol. Chem., 2017, 15, 5719–5730. [9] T. Richardson-Sanchez and R. Codd, Chem. Commun., 2018, 54, 9813–9816. [10] W. Tieu, T. Lifa, A. Katsifis and R. Codd, Inorg. Chem., 2017, 56, 3719–3728. [11] J. L. Wood, S. Ghosh, Z. H. Houston, N. L. Fletcher, J. Humphries, K. Mardon, D. T. Akhter, W. Tieu, A. Ivashkevich, M. P. Wheatcroft, K. J. Thurecht and R. Codd, Chem. Sci., 2024, 15, 11748–11760. [12] K. P. Nolan, C. A. Rosser, J. L. Wood, J. Font, A. Sresutharsan, J. Wang, T. E. Markham, R. M. Ryan and R. Codd, Chem. Sci., 2025, 16, 2180–2190. [13] K. P. Nolan, J. Font, A. Sresutharsan, M. P. Gotsbacher, C. J. M. Brown, R. M. Ryan and R. Codd, ACS Chem. Biol., 2022, 17, 426–437.